"Twin" Supernovae with SN factory

Hannah Fakhouri July 28, 2011

Spectra are a window into the explosion physics

Spectra are a window into the explosion physics

Nearby Supernova Factory:

Spectrophotometric Timeseries

Prepare the timeseries

- $\begin{array}{c} \bullet \ \, \text{Convert spectra in restframe} \\ \quad \, \text{Galactic extinction corrected; deredshifted,} \\ \quad \, \text{flux corrected for } D_L \\ \end{array}$
- Gaussian Process Regression Smoothing, interpolation, covariance
- Determine scale factor
 Spectrophotometry -> scale factor = brightness difference

Gaussian Process Regression

SNF20060621-015

Kernel function:

Form of data covariance

- Amplitude
- Wavelength length scale
- Phase length scale
- Noise amplitude

Use GPR results to

- Smooth spectra
- Interpolate to phase grid
- Estimate covariance

Gaussian Processes for Machine Learning (Rasmussen & Williams) http://www.gaussianprocess.org/gpml/

Scale factor: K

For each pair of SNe:

One parameter, κ , over all phases & wavelengths

$$\chi_{ij}^2 = \sum_{p} \sum_{\lambda} \frac{\left[\mathcal{L}_i(\lambda, p) - \kappa \mathcal{L}_j(\lambda, p)\right]^2}{\sigma_i^2(\lambda, p) + \kappa^2 \sigma_j^2(\lambda, p)}$$

Pairs are "twins" if spectra match

Twins are standard candles if:

$$\kappa = 1 \longleftrightarrow \Delta M = 0$$

$$\Delta M = -2.5 log_{10}(\mathcal{L}_i/\mathcal{L}_j) = -2.5 log_{10}(\kappa)$$

True flux comparison

+ offset

GPR predicted flux comparison

Preliminary Results

Based on GPR done on Ca H&K, Si II 6355 features Calculate χ^2 from GPR predicted flux and covariance Cuts on these two values yield low- ΔM sample

Preliminary Results

Based on GPR done on Ca H&K, Si II 6355 features Calculate χ^2 from GPR predicted flux and covariance Cuts on these two values yield low- ΔM sample

Next Steps

- Finalize kernel choice for GPR
- Determine twinness metric; χ^2 ?
- Apply host galaxy dust correction
- Unblind to full sample
- Test effects of limited phase consideration

Applicability to high-z

- Matching low-z to existing good quality high-z spectra

 Difficulties with host contamination and flux calibration
- Obtain spectrophotometric observations at high-z
 Can we do without full timeseries?
 What would signal to noise requirements be?

Thank You

Triplets

